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Abstract

In this note we consider two cases in the theory of the heat conduction models with three-phase-lag. For each one we propose a suit-
able Lyapunov function. These functions are relevant tools which allow to study several qualitative properties. We obtain conditions on
the material parameters to guarantee the exponential stability of solutions. The spectral analysis complements the results and we show
that if the conditions obtained to prove the exponential stability are not satisfied, then we can obtain the instability of solutions for suit-
able domains. We believe that this kind of results is fundamental to clarify the applicability of the models.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There are several parabolic and hyperbolic theories
which describe the heat conduction, the latter also being
called theories of second sound, where the propagation of
heat is modelled with finite propagation speed, in contrast
to the classical model using Fourier’s law leading to infinite
propagation speed of heat signals, see the surveys by
Chandrasekharaiah [2] or Hetnarski and Ignaczak [9,10]
or the book of Müller and Ruggeri [12]. Recently, there
have been considered the dual-phase-lag heat equations
which were proposed by Tzou [19–22] and investi-
gated by Quintanilla and Racke [13–17] and Wang et al.
[23–25].
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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In Refs. [2,9] there are described several models for the
conduction of heat in the thermomechanical context. We
can recall the models proposed by Lord and Shulman
[11], Green and Lindsay [4], Hetnarski and Ignaczak [9],
Green and Naghdi [5–8]. It is worth noting that the model
proposed by Tzou contains the theories of Lord and Shul-
man, Green and Lindsay as particular cases. When several
orders of approximation are considered in Tzou’s theory
the classical theory of Cattaneo [1] is obtained. However,
the theories proposed by Green and Naghdi [5,6] cannot
be obtained from this point of view. Recently Roy [18]
has proposed a theory with three-phase-lag which is able
to contain all the previous theories at the same time. The
basic equation is

qðP ; t þ sqÞ ¼ �ðkrT ðP ; t þ sT Þ þ k�rmðP ; t þ smÞÞ:
Here q is the heat flux vector, T is the temperature and m is
the thermal displacement that satisfies _m ¼ T . It seems that
the proposal of Roy was to establish a mathematical model
that includes three-phase-lags in the heat flux vector, the
temperature gradient and in the thermal displacement gra-
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dient. For this model, we can consider several kind of
Taylor approximations to recover the previously cited
theories. In particular the models of Green and Naghdi
are recovered.

We focus our attention to the two new equations which
are the following:
qcm
€T þ sqqcm Tv ¼ k�DT þ s�mD _T þ ksT D€T ð1:1Þ
and
qcm
€T þ sqqcm Tv þ

s2
q

2
qcmT

{ ¼ k�DT þ s�mD _T þ ksT D€T ; ð1:2Þ
where the coefficients appearing are positive constant mate-
rial parameters. In particular s�m ¼ k�sm þ k.

It is worth noting that in case that k* = 0 we have s�m ¼ k
and Eqs. (1.1) and (1.2) become
qcm
€T þ sqqcm Tv ¼ s�mD _T þ ksT D€T ð1:3Þ
and

qcm
€T þ sqqcm Tv þ

s2
q

2
qcmT

{ ¼ s�mD _T þ ksT D€T : ð1:4Þ

These equations are not new. They are examples of the
dual-phase-lag heat conduction equations proposed by
Tzou [19,20]. This can be seen introducing h ¼ _T . Then
the equations become

qcm
_hþ sqqcm

€h ¼ kDhþ ksT D _h ð1:5Þ

and
qcm
_hþ sqqcm

€hþ
s2

q

2
qcm hv ¼ kDhþ ksT D _h: ð1:6Þ
We recall that the stability aspects concerning these equa-
tions were given in [15].

We observe that Eq. (1.2) is of wave equation type
for €T ,
o2

ot2
ð€T Þ � 2ksT

s2
qqcm

D€T ¼ l:o:t:

with lower order terms on the right-hand side. The charac-
teristic wave speeds are
S1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2ksT

s2
qqcm

s
:

Actually, in one space dimension, we can reformulate (1.2)
as first-order system for

V :¼ T ; _T ; €T ; Tv ; T x; _T x; €T x

� �0
; _V þ AV x þ BV ¼ 0
with

A ¼

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 � 2k�

s2
qqcm

� 2s�m
s2

qqcm
� 2ksT

s2
qqcm

0 �1 0 0 0 0 0

0 0 �1 0 0 0 0

0 0 0 �1 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

B ¼

0 �1 0 0 0 0 0

0 0 �1 0 0 0 0

0 0 0 �1 0 0 0

0 0 2
s2

q

2
sq

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

The eigenvalues c1�7 of A are all real,

c1 ¼ c2 ¼ c3 ¼ c4 ¼ c5 ¼ 0; c6;7 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2ksT

s2
qqcm

s
:

Thus, it is a hyperbolic system with finite propagation
speed, and we recover with c6,7 the characteristic wave
speeds S1,2.

Eq. (1.1) is of heat equation, i.e. parabolic, type for €T ,

o

ot
ð€T Þ � ksT

sqqcm
D€T ¼ l:o:t:

hence infinite propagation speed is expected.
In this paper we propose a Lyapunov function for each

Eqs. (1.1) and (1.2). These functions will be a powerful tool
to study the qualitative aspects of the solutions of these
equations. We also consider the spectral analysis of these
equations. Both analysis aspects characterize suitable con-
ditions on the constitutive parameters to guarantee the sta-
bility or the instability of solutions, respectively.

We believe that this kind of results is fundamental to
clarify the applicability of the models. In fact, if a model
does not guarantee the stability of solutions, it cannot be
a good candidate to describe the heat conduction. For
the exponential stability we remark that there are examples
for which Fourier’s law of heat conduction leads to expo-
nential stability, while Cattaneo’s law does not, cp. [3].
Thus, we believe that, our results are the first step to clarify
before to develop any qualitative study in these theories.

The paper is organized as follows: In Section 2 we prove
(exponential) stability for Eq. (1.1) whenever condition
(2.1) holds. A relevant, tool, a Lyapunov function is pro-
posed. In Section 3, we get the instability of solutions
whenever (2.1) fails. In the same manner, Sections 4 and
5 are devoted to the discussion of Eq. (1.2) with respect
to the condition (4.1). In Section 6, we summarize our
results.
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2. Stability of solutions: Eq. (1.1)

In this section we will prove the stability of solutions of
Eq. (1.1) whenever we assume that the constitutive con-
stants satisfy:

s�m > sqk�: ð2:1Þ

We will consider the problem determined by Eq. (1.1) in a
bounded domain B smooth enough to guarantee the use of
the divergence theorem. To determine a well posed prob-
lem we impose the initial conditions

T ðx; 0Þ ¼ T 0ðxÞ; _T ðx; 0Þ ¼ h0ðxÞ;
€T ðx; 0Þ ¼ g0ðxÞ; x 2 B; ð2:2Þ

and the homogeneous boundary conditions

T ðx; tÞ ¼ 0; x 2 oB: ð2:3Þ

Now, we will prove the exponential decay of solutions of
the problem determined by Eq. (1.1), the initial conditions
(2.2) and the boundary conditions (2.3). We define an en-
ergy functional which is a useful tool to study our problem:

F ðtÞ :¼ 1

2

Z
B

qcmð _T þ sq
€T Þ2 þ k�jrðT þ sq

_T Þj2
�

þ sq s�m � k�sq

� �
þ ksT

� �
jr _T j2

�
dv: ð2:4Þ

We have

F 0ðtÞ ¼ �
Z

B
rð _T þ sq

€T Þ � s�m � k�sq

� �
r _T þ ksTr€T

� �
dv

þ sq s�m � k�sq

� �
þ ksT

� � Z
B
r _T � r€T dv: ð2:5Þ

Thus, we obtain

F 0ðtÞ ¼ �
Z

B
s�m � k�sq

� �
jr _T j2 þ ksT sqjr€T j2

� �
dv 6 0:

ð2:6Þ

This inequality shows that the solutions of our problem are
stable whenever we assume that the constitutive coefficients
satisfy condition (2.1). However, we are going to see a
stronger result. We will prove that the solutions decay in
an exponential way.

First, we note that the function F defines an energy of
the type of jrT j2; jr _T j2; j€T j2. Now, we define the function

GðtÞ :¼
Z

B

s�m
2
jrT j2þ ksTrT � r _T þ qcmT _T þ qcmsqT €T

� �
dv:

We have

G0ðtÞ¼�k�
Z

B
jrT j2dvþ

Z
B

ksT jr _T j2þqcm
_T 2þqcmsq

_T €T
� �

dv:

Now, it is clear that if we take � a small enough we can
guarantee that F(t) + �G(t) defines a equivalent norm to
F(t) and such that
Z
B

s�m � k�sq

� �
jr _T j2 þ ksT sqjr€T j2

� �
dv

� �
Z

B
ksT jr _T j2 þ qcm

_T 2 þ qcmsq
_T €T

� �
dv

is equivalent to an energy of the type ofZ
B
jr _T j2 þ jr€T j2
� �

dv:

Thus, it is clear that

F 0ðtÞ þ �G0ðtÞ 6 �j
Z

B
jrT j2 þ jr _T j2
� �

dv

6 �j�ðF ðtÞ þ �GðtÞÞ;

where j and j* are two calculable positive constants. Thus,
it follows the existence of two positive constants C and #
such that

F ðtÞ 6 CF ð0Þ expð�#tÞ ð2:7Þ

for all t P 0. This inequality says that the solutions decay
in an exponential way.
3. Spectral analysis for (1.1)

We have proved that whenever we assume that inequal-
ity (2.1) holds, then the solutions decay in a exponential
way. In this section we will see that whenever this condition
fails, then there exist domains B such that the problem has
unstable solutions. To this end, let us consider functions of
the form
T ðx; tÞ ¼ expðxtÞUðxÞ; ð3:1Þ

where U satisfies

DUþ kU ¼ 0 in B and U ¼ 0 on oB:

If function (3.1) is a solution of (1.1) x must satisfy the
equation

sqqcmx3 þ ðqcm þ ksT knÞx2 þ s�mknxþ k�kn ¼ 0; ð3:2Þ

where (kn)n denote the eigenvalues of the negative Laplace
operator for Dirichlet boundary conditions.

By the Hurwitz criterion, we know that all three roots of
the polynomial

b3 þ l1b
2 þ l2bþ l3 ¼ 0

have negative real parts if and only if

lj > 0; j ¼ 1; 2; 3; l1l2 > l3 ð3:3Þ

holds. For (3.2) this conditions turns into

ðqcm þ ksT knÞs�m > sqqcmk
�:
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If this condition shall be satisfied uniformly in kn then we
need that (2.1) holds. In fact, we can extend this condition
a little bit. Let the eigenvalues be arranged increasingly
with k1 denoting the smallest eigenvalue. Then, for the sta-
bility, it is sufficient that

k1 >
sqk� � s�m
� �

qcm

kT T
: ð3:4Þ

On the other hand if (2.1) does not hold, we can always se-
lect a domain in such a way that (3.4) does not hold either
and then, there exist unstable solutions.
4. Stability of solutions: Eq. (1.2)

The aim of this section is to prove that the solutions
of the problem determined by Eq. (1.2), the initial condi-
tions (2.2) and the boundary conditions (2.3) are stable
whenever

2ksT

sq
> s�m > k�sq ð4:1Þ

holds.
Our approach will be similar to the one used in Section 2

for Eq. (1.1). However, here the problem has a greater
complexity requiring more sophisticated functionals.

Let us define the energy functional

F ðtÞ :¼ 1

2

Z
B

qcm
_T þ sq

€T þ
s2

q

2
Tv

 !2

þk� r T þ sq
_T þ

s2
q

2
€T

 !					
					
2

0
@

þ sq s�m�k�sq

� �
r _T þ sq

2
€T

� �			 			2þ ksT �k�
s2

q

2

 !
r _T
		 		2

þ
s2

q

2
ksT �

sqs�m
2

� �
r€T
		 		2!dv: ð4:2Þ

We have

F 0ðtÞ ¼ �
Z

B
r _T þ sq

€T þ
s2

q

2
Tv

 ! 

� s�m � k�sq

� �
r _T þ ksT � k�

s2
q

2

 !
r€T

 !!
dv

þ
Z

B
sq s�m � k�sq

� �
r _T þ sq

2
€T

� �
� r €T þ sq

2
Tv

� ��

þ ksT � k�
s2

q

2

 !
r _T � r€T

!
dv

þ
Z

B

s2
q

2
ksT �

sqs�m
2

� �
r€T � r Tv

 !
dv: ð4:3Þ
It follows that the following equalities

F 0ðtÞ ¼ � s�m � k�sq

� � Z
B
r _T
		 		2dv� sq ksT � k�

s2
q

2

 !
�

s2
q

2
s�m � k�sq

� � !Z
B
r€T
		 		2dv

� ksT � k�
s2

q

2

 !Z
B
r _T � r€T dv� sq s�m � k�sq

� � Z
B
r€T � r _T dv

�
s2

q

2
s�m � k�sq

� � Z
B
r Tv �r _T dv�

s2
q

2
ksT � k�

s2
q

2

 !Z
B
r Tv �r€T dv

þ sq s�m � k�sq

� � Z
B
r _T � r€T dvþ sq

s2
q

2
s�m � k�sq

� � Z
B
r _T � r Tv dv

þ sq

s2
q

4
s�m � k�sq

� � Z
B
r€T � r Tv dvþ ksT � k�

s2
q

2

 !Z
B
r _T � r€T dv

þ
s2

q

2
ksT �

sqs�m
2

� �Z
B
r€T � r Tv dv ð4:4Þ

¼ � s�m � k�sq

� � Z
B
r _T
		 		2dv� sq ksT �

sqs�m
2

� �Z
B
r€T
		 		2dv

þ �
s2

q

2
ksT � k�

s2
q

2

 !
þ

s3
q

4
s�m � k�sq

� �
þ

s2
q

2
ksT �

sqs�m
2

� � !Z
B
r€T � r Tv dv

ð4:5Þ
hold. Thus, we obtain

F 0ðtÞ ¼ � s�m � k�sq

� � Z
B
jr _T j2dv

� sq ksT �
sqs�m

2

� �Z
B
jr€T j2dv: ð4:6Þ

This inequality shows the stability of solutions whenever
conditions (4.1) holds. Again, we want to prove the expo-
nential decay. For this purpose we define the function

G1ðtÞ :¼ 1

2

Z
B

s2
q

2
qcmðTv Þ2 þ qcmð€T Þ2 þ ksT jr€T j2

 

þ 2s�mr _T � r€T þ 2k�rT � r€T

!
dv:

We have

G01ðtÞ ¼ �sqqcm

Z
B
j Tv j2dvþ

Z
B

s�m jr€T j2 þ k�r _T � r€T
� �

dv:

We also define a new function

G2ðtÞ :¼
Z

B

s�m
2
jrT j2 þ ksTrT � r _T

 

þ qcmT _T þ sqqcmT €T þ
s2

q

2
qcmT Tv

!
dv:

We have

G02ðtÞ¼�k�
Z

B
jrT j2dv

þ
Z

B
ksT jr _T j2þqcmð _T Þ2þsqqcm

_T €T þ
s2

q

2
qcm

_T Tv
 !

dv:

If we take �2 small enough we can guarantee that

�2G02ðtÞ þ G01ðtÞ 6 ��2k�
Z

B
jrT j2dv�

Z
B

sqqcm

2
j Tv j2dv

þ C�
Z

B
jr _T j2 þ jr€T j2
� �

dv: ð4:7Þ

Here C* is a computable positive constant.
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If we take now �1 small enough, we can guarantee that
the function F(t) + �1(G1(t) + �2G2(t)) is equivalent to the
function F(t). At the same time we can see that

F 0ðtÞ þ �1 G01ðtÞ þ �2G02ðtÞ
� �

6 �j
Z

B
jrT j2 þ jr _T j2 þ jr€T j2 þ ðTv Þ2
� �

dv

6 �j� F ðtÞ þ �1ðG1ðtÞ þ �2G2ðtÞÞð Þ: ð4:8Þ

Again j and j* are calculable positive constants. Thus, we
can obtain an estimate similar to (2.7) and the exponential
stability of solutions is proved.
5. Spectral analysis for (1.2)

The aim of this section is to prove that whenever
condition (4.1) fails then there exist domains B such that
unstable solutions of the problem determined by Eq. (1.2)
and the boundary and initial conditions (2.2) and (2.3)
exist.

If we look for solutions of the form (3.1) to Eq. (1.2), x
must satisfy the equation

qcms2
q

2
x4 þ qcmsqx3 þ ðqcm þ ksT knÞx2 þ s�mknxþ k�kn ¼ 0:

ð5:1Þ

We can write it in the following form

x4 þ a1x3 þ a2x2 þ a3xþ a4 ¼ 0;

where

a1 ¼
2

sq
; a2 ¼

2

s2
q

þ 2ksT kn

s2
qqcm

; a3 ¼
2s�mkn

s2
qqcm

; a4 ¼
2k�kn

s2
qqcm

:

We know that the Hurwitz criterium says that the solutions
of the equation have negative real part if and only if all the
ai are positive and the following conditions:

a1a2 � a3 > 0; a1a2a3 � a2
1a4 � a2

3 > 0

hold. In our case, we have

a1a2 � a3 ¼
2

sq

2

s2
q

þ 2ksT kn

s2
qqcm

 !
� 2s�mkn

s2
qqcm

¼ 4

s3
q

þ 4ksT � 2sqs�m
s3

qqcm
kn:

To guarantee that this is positive for every kn, we need to
impose

s�m <
2ksT

sq
: ð5:2Þ

The second relation is
a1a2a3 � a2
1a4 � a2

3 ¼
2

sq

2

s2
q

þ 2ksT kn

s2
qqcm

 !
2s�mkn

s2
qqcm

� 2

sq

� �2
2k�kn

s2
qqcm
� 2s�mkn

s2
qqcm

 !2

¼ 8kn

s5
qqcm

s�m � k�sq

� �

þ s�mk
2
n

s5
qq

2c2
m

8ksT � 4s�msq

� �
:

If we assume that (5.2) holds, the second condition is

k�sq < s�m : ð5:3Þ
If we assume that (5.2) fails, we can always select kn large
enough to guarantee that

4

s3
q

þ 4ksT � 2sqs�m
s3

qqcm
kn < 0

and then, there exists instability of solutions.
In case that (5.2) holds, but (5.3) fails, we can always

select a domain B with a geometry such that the first eigen-
value k1 is small enough to guarantee that

2

s5
qqcm

s�m � k�sq

� �
þ s�mk1

s5
qq

2c2
m

2ksT � s�msq

� �
< 0: ð5:4Þ

Thus, we will obtain unstable solutions to our problem.
We also point out that in case that (5.2) holds and the

geometry of B is good enough to guarantee that

2

s5
qqcm

s�m � k�sq

� �
þ s�mk1

s5
qq

2c2
m

2ksT � s�msq

� �
> 0

then the solutions are stable.

6. Conclusion

In this short note we have analyzed the range of the
parameters sT, sm, k, k* and sq for the three-phase-lag the-
ory in order to guarantee the that the solutions of the cor-
responding heat equation are stable. For Eq. (1.1) we have
seen that

1.a. If s�m � k�sq < 0, then, there may exist unstable solu-
tions, depending on the domain.

1.b. If (3.4) is violated, there always exist unstable
solutions.

2. If s�m � k�sq > 0, then the solutions are always (expo-
nentially) stable.

3. In the particular case that k* = 0, we recover the dual-
phase-lag problem and the solutions are always stable.
This agrees with the analysis developed in [15].
For Eq. (1.2) we have seen that

4. If sqs�m > 2ksT there always exist unstable solution.
5.a. If sqs�m < 2ksT but s�m > k�sq then there may exist unsta-

ble solutions, depending on the domain.
5.b. If (5.4) holds, there always exist unstable solutions.

6. If k�sq < s�m <
2ksT
sq

, then the solutions are always (expo-
nentially) stable.
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7. In the particular case that k* = 0 we have s�m ¼ k and
we recover the dual-phase-lag problem. The solutions
are stable (unstable) whenever sq < (>)2sT. This agrees
with the analysis developed in [15].
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